Abstract

Abstract The phenol removal through adsorption using industrial waste has been studied. The red mud generated as waste in the aluminum plants was used in this research. The surface characterizations of red mud were assessed. The batch experiment was investigated with pH (2–12), adsorption period (120–600 min), phenol content (40–200 mg/L), adsorbent dose (2–7 g/L), and temperature (30–50 °C). At the optimum operating condition, the percentage of phenol removal was 87.5%. The pseudo-second-order kinetic model (r2 = 0.98625–0.99994) fitted better than the pseudo-first-order kinetic model. The Freundlich isotherm model was best fitted (r2 = 0.99734–0.99955) among Langmuir, Dubinin–Radushkevich (D-R), and Temkin isotherms. The Langmuir monolayer adsorption capacity was 49.30966 mg/g at 30 °C. The adsorption mechanisms were supported by Reichenberg, Fick, Elovich, Furusawa, and Smith and Boyd models (r2 > 0.8). The thermodynamics suggested endothermic, random, and spontaneous adsorption above 50 °C. The scale-up design using the Langmuir isotherm, and the disposal of used adsorbent after incineration, was established in this study. The research concludes that the red mud generated from the aluminum plant can be used to remove the phenol from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.