Abstract
A simple and sensitive method based on adsorptive anodic stripping differential pulse voltammetry (AASDPV) for the determination of cellcept, using a magnetic Fe3O4 nanoparticles and functionalized (carboxylated) multi-walled carbon nanotubes modified glassy carbon electrode (f-MWCNs/Fe3O4/GCE) was developed. In phosphate buffer solution (pH = 5), the voltammogram of cellcept exhibited tow anodic peaks and the well-defined peak at about 0.611 V vs SCE was used for its monitoring. The modified electrode was characterized by different methods such as electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The experimental parameters, such as pH, deposition potential and time, as well as scan rate were optimized. Under the optimized conditions, Ip (μA) was proportional to the cellcept concentration in the range of 0.05–200 μM (R2 = 0.9989) with a detection limit of 9.0 nM and limit of quantification of 30.2 nM. The recovery was >98%. The practical analytical utilities of the modified electrode were demonstrated by the determination of cellcept in human urine and blood serum samples. Modified electrode showed an adequate sensitivity and stability for evaluated samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.