Abstract

Thepreparation of a novel polymer (poly(dopamine quinone-vanadyl) (polyDQV)) bearing dopaminequinone and VOIV redox groupsis described. PolyDQV was characterized using field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy, UV-Vis spectroscopy as well as electrochemical methods such as differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The electrocatalytic activity of polyDQV was studied toward electrooxidation of uric acid using differential pulse voltammetry as well as cyclic voltammetry. PolyDQV presents interesting electrocatalytic activity toward UA oxidation in phosphate buffer solution (0.1M, pH2) to a well-defined oxidation peak at 0.65V (vs. Ag/AgCl). The polyDQV-modified carbon paste electrode (CPE/polyDQV) presents a precise linear signal-concentration relationship in the ranges of 0.3-5μM and 5 to 200μM with a detection limit (S/N = 3) of 0.02μM. The %RSD values for ten replicate measurements of 0.5 and 50μM UA were 1.8 and 3%, respectively, indicating good repeatability of analytical signals. Appropriate recovery values (in the range 96 to 103%) and good selectivity for UA over common coexisting species (such as ascorbic acid and dopamine) exhibit that CPE/polyDQV is a promising novel platform for sensing UA in human blood serum and urine samples. Graphical abstract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.