Abstract

Single component adsorption and desorption isotherms of phenol were measured on a high-efficiency Kromasil-C 18 column ( N=15 000 theoretical plates) with pure water as the mobile phase. Adsorption isotherm data were acquired by frontal analysis (FA) for seven plateau concentrations distributed over the whole accessible range of phenol concentration in pure water (5, 10, 15, 20, 25, 40, and 60 g/l). Desorption isotherm data were derived from the corresponding rear boundaries, using frontal analysis by characteristic points (FACP). A strong adsorption hysteresis was observed. The adsorption of phenol is apparently modeled by a S-shaped isotherm of the first kind while the desorption isotherm is described by a convex upward isotherm. The adsorption breakthrough curves could not be modeled correctly using the adsorption isotherm because of a strong dependence of the accessible free column volume on the phenol concentration in the mobile phase. It seems that retention in water depends on the extent to which the surface is wetted by the mobile phase, extent which is a function of the phenol concentration, and of the local pressure rate, which varies along the column, and on the initial state of the column. By contrast, the desorption profiles agree well with those calculated with the desorption isotherms using the ideal model, due to the high column efficiency. The isotherm model accounting best for the desorption isotherm data and the desorption profiles is the bi-Langmuir model. Its coefficients were calculated using appropriate weights in the fitting procedure. The evolution of the bi-Langmuir isotherm parameters with the initial equilibrium plateau concentration of phenol is discussed. The FACP results reported here are fully consistent with the adsorption data of phenol previously reported and measured by FA with various aqueous solutions of methanol as the mobile phase. They provide a general, empirical adsorption model of phenol that is valid between 0 and 65% of methanol in water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call