Abstract

Trimetal oxides have received high attention in treatment of fluoride-polluted drinking waters. In this study, Mn-Al-La (MAL) oxide with a mole ratio of 2:1:1 was successively prepared and characterized by XRD, FTIR, XPS, and TEM. It exhibited as cotton-like assemblages (500-800nm of axial lengths), and BET specific surface area was 52 m2/g. It was used to study fluoride adsorptions in aqueous solutions by batch experiments, under different adsorbent/adsorbate levels, times, temperatures, pH and coexisting anions, and treat simulated groundwater (with 2.85mg/L fluoride and pH 7.0) by batch and column tests. Adsorption data well fitted to pseudo-second-order rate model (R2 = 0.996-0.999), and Langmuir (R2 = 0.962 - 0.997) and Freundlich (R2 = 0.964-0.989) isothermal models. Their maximum adsorption capacities could reach 45-113mg/g. Only H2PO4- anions had a restrictive impact at pH 7.0, and there was a good removal ability at pH 3-9. Adsorption processes were spontaneous, endothermic, and random. Adsorption mechanisms were electrostatic interaction and ligand exchange at pH 7.0. Adsorption capacity could reach 73% of initial value at pH 7.0, after three cycles. All application data on the polluted groundwater treatments show MAL oxide is a potential adsorbent for fluoride removals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call