Abstract

The equilibrium adsorption capacity of water on a natural zeolite has been experimentally determined at different zeolite temperatures and water vapor pressures for use in an adsorption cooling system. The Dubinin–Astakhov adsorption equilibrium model is fitted to experimental data with an acceptable error limit. Separate correlations are obtained for adsorption and desorption processes as well as a single correlation to model both processes. The isosteric heat of adsorption of water on zeolite has been calculated using the Clausius–Clapeyron equation as a function of adsorption capacity. The cyclic adsorption capacity swing for different condenser, evaporator and adsorbent temperatures is compared with that for the following adsorbent–refrigerant pairs: activated carbon–methanol; silica gel–water; and, zeolite 13X–water. Experimental results show that the maximum adsorption capacity of natural zeolite is nearly 0.12 kg w /kg ad for zeolite temperatures and water vapor pressures in the range 40–150 °C and 0.87–7.38 kPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.