Abstract
Fluoroquinolone (FQ) antibacterials are aquatic contaminants of emerging concern (CEC), and adsorption to mineral surfaces is expected to play an important role in the fate, transport, and treatment of FQs. This study characterizes and models the adsorption of a zwitterionic FQ, ofloxacin (OFX), to goethite (α-FeOOH) over a wide range of pH (3–11), OFX concentration (20–500μM), and electrolyte compositions (0.001–0.1M NaCl and NaClO4). Comparing OFX adsorption to structural analogues demonstrates that the carboxylate group is essential for binding to goethite. ATR-FTIR measurements indicate that FQs complex to goethite surfaces through carboxylate and carbonyl oxygen atoms, and that ClO4− co-adsorbs with OFX. Adsorption of the zwitterionic OFX increases with increasing ionic strength and is enhanced in NaClO4 relative to NaCl electrolyte, whereas adsorption of a non-zwitterionic analogue is insensitive to ionic strength. A CD-MUSIC (charge distribution-multisite complexation) model, incorporating multiple modes of surface complexation constrained by spectroscopic measurements and the crystallographic distribution of goethite surface sites, yields accurate predictions over wide-ranging solution conditions. According to the model, OFX adsorbs predominantly by inner-sphere complexation on terminal surfaces of the rod-shaped goethite crystals in NaCl electrolyte, and OFX-ClO4− ion pairing in NaClO4 induces formation of additional inner- and outer-sphere surface complexes on multiple crystal faces of goethite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.