Abstract
The adsorption behavior of graphene aerogel in the 4-(Methylnitrosamino)-1-(3-pryidyl)-1-butanone (NNK) aqueous solution was studied. The adsorption kinetics fitted pseudo-second-order model with the rate constant (k2) of 0.154 g/mg·h. The adsorption isotherm was investigated and fitted Langmuir and Freundlich models well, and the maximum adsorption capacity (qm) was 59.66 mg/g estimated from Langmuir isotherm. Thermodynamic result indicated that the process of adsorption of NNK onto graphene aerogel was spontaneous and exothermic. Higher pH solution was favorable for NNK adsorption on graphene aerogel. The adsorption for NNK on graphene aerogel arose from the π-π interaction between them, and the high adsorption efficiency was resulted from the -NO2 functional groups. The capability of graphene aerogel was maintained after repeated absorption-desorption cycles, which was benefit for convenient separating and recycling of graphene aerogel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.