Abstract

Excessive amount of phosphate released from wastewater can cause eutrophication to the receiving waters. Adsorption technique has been used to remove phosphate from aqueous solutions. The use of waste mussel shell (WMS) to remove phosphate from aqueous solutions and application of several kinetic and isotherm models to describe the adsorption of phosphate onto WMS were conducted in batch experiments. The phosphate adsorption by the WMS was examined with respect to solute concentration, contact time and adsorbent dose. The phosphate removal efficiencies obtained were 46.7, 57.6, 64.1, 70.8 and 75.2% at 144 h contact time for WMS dosage of 2, 4, 6, 8 and 10 g, respectively. Physical and chemical properties of WMS including surface physical morphology and elemental compositions were characterized. A comparison of kinetic models applied to the phosphate adsorption onto WMS was evaluated for the pseudo-first order and pseudo-second order model. The experimental data fitted very well with the pseudo-second order kinetic model (R2 > 0.984), which indicated the adsorption process was chemisorption. In the isotherm studies, the Langmuir and Freundlich isotherm models were applied. The results indicated that the use of Freundlich equation is well described with the phosphate adsorptions onto WMS (R2 = 0.968), suggesting the heterogeneity of the adsorbent surface. The experimental results suggested the use of WMS as an excellent adsorption material for phosphate removal from aqueous solutions, giving new insights into environmental engineering practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.