Abstract

The interaction of the l-lactate ion ( l-CH3CH(OH)COO(-), lact(-1)) with hematite (alpha-Fe2O3) nanoparticles (average diameter 11 nm) in the presence of bulk water at pH 5 and 25 degrees C was examined using a combination of (1) macroscopic uptake measurements, (2) in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and (3) density functional theory modeling at the B3LYP/6-31+G* level. Uptake measurements indicate that increasing [ lact(-1)]aq results in an increase in lact(-1) uptake and a concomitant increase in Fe(III) release as a result of the dissolution of the hematite nanoparticles. The ATR-FTIR spectra of aqueous lact(-1) and lact(-1) adsorbed onto hematite nanoparticles at coverages ranging from 0.52 to 5.21 micromol/m2 showed significant differences in peak positions and shapes of carboxyl group stretches. On the basis of Gaussian fits of the spectra, we conclude that lact(-1) is present as both outer-sphere and inner-sphere complexes on the hematite nanoparticles. No significant dependence of the extent of lact(-1) adsorption on background electrolyte concentration was found, suggesting that the dominant adsorption mode for lact(-1) is inner sphere under these conditions. On the basis of quantum chemical modeling, we suggest that inner-sphere complexes of lact(-1) adsorbed on hematite nanoparticles occur dominantly as monodentate, mononuclear complexes with the hydroxyl functional group pointing away from the Fe(III) center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call