Abstract
Arsenic is a highly toxic pollutant and exists in inorganic and organic forms in groundwater and industrial wastewater. It is of great importance to reduce the arsenic content to lower levels in the water (e.g., <10 ppb for drinking) in order to minimize risk to humans. In this study, a Fe–Mn–Zr ternary magnetic sorbent was fabricated via precipitation for removal of inorganic and organic arsenate. The synthesis of sorbent was optimized by Taguchi method, which leads to an adsorbent with higher adsorption capacity. The adsorption of As(V) was pH dependent; the optimal removal was achieved at pH 2 and 5 for inorganic and organic As(V), respectively. Contact time of 25 h was sufficient for complete adsorption of both inorganic and organic As(V). The adsorption isotherm study revealed that the adsorbent performed better in sequestration of inorganic As(V) than that of organic As(V); both adsorption followed the Langmuir isotherm with maximum adsorption capacities of 81.3 and 16.98 mg g−1 for inorganic and organic As(V), respectively. The existence of anions in the water had more profound effect on the adsorption of organic As(V) than the inorganic As(V). The co-existing silicate and phosphate ions caused significantly negative impacts on the adsorption of both As(V). Furthermore, the existence of humic acid caused the deterioration of inorganic As(V) removal but showed insignificant impact on the organic As(V) adsorption. The mechanism study demonstrated that ion exchange and complexation played key roles in arsenic removal. This study provides a promising magnetic adsorptive material for simultaneous removal of inorganic and organic As(V).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.