Abstract

We systematically studied the adsorption of O2 on Au n- in the size range of 0-1 nm at low temperatures and determined new active sizes with n = 22, 24, 34, and 36. The kinetic measurements more clearly showed the correlation between the reactivity of Au n- with O2 and their electronic properties: the sizes with a closed electron shell are always inert, and the sizes with an unpaired electron can chemically adsorb one O2 molecule if their adiabatic detachment energies (ADEs) are lower than a threshold around 3.5 eV. This ADE threshold dividing the active and inert Au n- is independent of the clusters' sizes, global geometries, and local adsorption sites. According to the widely accepted electron transfer mechanism, this threshold could stand for the case in which the total energy of the Au n- and an O2 roughly equals that of the spin crossover point of the potential surfaces of Au n-O2- and Au n-···O2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call