Abstract

Ettringite is a hydrous calcium aluminum sulfate mineral present in cement. In this study, ettringite was synthesized via co-precipitation to remove methyl blue, dichromate, and copper ions from solutions with various pH values. The synthesized ettringite was characterized using scanning electron microscopy, X-ray photoelectron spectrometry, Fourier transform infrared spectroscopy, zeta potential analysis, and the Brunauer–Emmett–Teller method. Equilibrium adsorption experiments were performed using methyl blue and dichromate at pH values ranging from 5 to 11. To avoid precipitation, equilibrium adsorption experiments were performed on copper ions in solutions with pH values of 3, 4, and 5. The adsorption kinetics experiments for each contaminant were performed at pH 5. The results showed that ettringite was successfully synthesized, and calcite might have precipitated during the synthesis process. The point of zero charge was at pH 8.6. The maximum adsorption capacities for methyl blue, dichromate, and copper ions at pH 5 were 406, 321, and 365 mg/g, respectively. The adsorption kinetics fitted the pseudo-second-order model well. The properties of the contaminants affect their equilibrium and rate constants. Ion exchange is regarded as the primary adsorption mechanism, whereas the other mechanisms include complexation, hydrogen bonding, surface precipitation, π-interaction, and van der Waals forces. This study revealed a new adsorbent, ettringite, for the removal of contaminants from wastewater, which is a promising alternative adsorbent that can be used under specific conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.