Abstract

Adsorption of Hg(II) by kaolinite was investigated as a function of solution pH, ionic strength, and the competitive or complexation effects of ligands (Cl, SO4, PO4) and metals (Ni and Pb). Mercury(II) adsorption from a 0.6 μM Hg(II) solution was primarily influenced by pH. The Hg(II) adsorption edge was described by a pH50 (pH where 50% adsorption occurs) of 3.4 and a pHmax (pH where maximum adsorption occurs) of 4.4. At pH values above the pHmax, Hg(II) retention decreased with increasing pH. Chloride and Ni shifted pH50 from 3.4 to 7 and 4.1, respectively. Nickel and Pb reduced the amount of Hg(II) adsorbed throughout the pH range examined. Ionic strength and the presence of SO4 and PO4 had relatively little impact on the Hg(II) adsorption envelope. The adsorption of Hg(II) was predicted through the application of the triple layer model (TLM) by assuming that the kaolinite surface was composed of equal proportions of silanol and aluminol groups. The TLM model suggests that the silanol group was responsible for retaining the bulk of the adsorbed Hg(II), through the formation of the ≡SiO−‐HgOH+ outer‐sphere, and the ≡SiOHg OH−2 and ≡SiOHgCl0 or ≡SiOHgOHCl− (Cl system) inner‐sphere species. The ≡AlO−‐HgOH+ outer‐sphere complex accounted for a small percentage (<15–35%) of the adsorbed Hg(II). The TLM results suggested that Hg(II) adsorption by both ≡SiOH and ≡AlOH sites on kaolinite should be considered to predict adequately Hg(II) retention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.