Abstract

Microplastic pollution of water and food chains can endanger human health. It has been reported that environmental DNA can be carried by microplastics and spread into the ecosystem. To better comprehend the interactions between microplastics and DNA, we herein investigated the adsorption of DNA oligonucleotides on a few important microplastics. The microplastics were prepared using common plastic objects made of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), composite of PS/PVC, and polyethylene terephthalate (PET). The effect of environmentally abundant metal ions such as Na+, Mg2+, and Ca2+ on the adsorption was also studied. Among the microplastics, PET and PS had the highest efficiency for the adsorption of linear DNA, likely due to the interactions provided by their aromatic rings. The study of DNA desorption from PET revealed the important role of hydrogen bonding and metal-mediated adsorption, while van der Waals force and hydrophobic interactions were also involved in the adsorption mechanism. The adsorption of spherical DNA (SNA) made of a high density of DNA coated on gold nanoparticles (AuNPs) was also studied, where the adsorption affinity order was found to be PET > PS/PVC > PS. Moreover, a tighter DNA adsorption was achieved in the presence of Ca2+ and Mg2+ compared to Na+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.