Abstract
Triethoxysilyl functionalized hyperbranched polsiloxysilanes at the focal (FT-HBPSs) and terminal (TT-HBPSs) positions were synthesized to investigate adsorption behavior onto a silicon wafer surface. The surface of the silicon wafer adsorbed with the HBPSs was characterized by X-ray photoelectron spectroscopy, atomic force microscopy (AFM), static and dynamic water contact angle measurements. The AFM images indicated the formation size of dot-like structures were approximately 200 nm. The presence of vinyl terminal groups of FT-HBPSs permitted conversion of the surface from a non-polar hydrocarbon to a polar hydroxylated or carboxylated structures. After the polarity was changed, the surface properties were also studied using the above surface analysis techniques. The dynamic contact angle measurement indicated that the silicon wafer surface modified by FT-HBPSs was more hydrophilic in water than TT-HBPS. This behavior can be explained by the difference of connecting points between HBPS and the silicon wafer surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.