Abstract
To understand the nature of H2S adsorption onto carbon surfaces under dry and anoxic conditions, the effects of carbon pore structure and surface chemistry were studied using activated carbon fibers (ACFs) with different pore structures and surface areas. Surface pretreatments, including oxidation and heattreatment, were conducted before adsorption/desorption tests in a fixed-bed reactor. Raw ACFs with higher surface area showed greater adsorption and retention of sulfur, and heat treatment further enhanced adsorption and retention of sulfur. The retained amount of hydrogen sulfide correlated well with the amount of basic functional groups on the carbon surface, while the desorbed amount reflected the effect of pore structure. Temperature-programmed desorption (TPD) and thermal gravimetric analysis (TGA) showed that the retained sulfurous compounds were strongly bonded to the carbon surface. In addition, surface chemistry of the sorbent might determine the predominant form of adsorbate on the surface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have