Abstract
Porous silicon layers with a one-dimensional lateral gradient in pore size are prepared by electrochemical etching and characterized by spectroscopic ellipsometry in the visible to near-infrared region. The ellipsometer is equipped with a micro-spot option giving a lateral resolution of approximately 100 µm. By matching multiple-layer-model calculations to the laterally-resolved variable angle-of-incidence spectroscopic ellipsometry data, the thickness variation along the gradient as well as the in-depth porosity profile is mapped. Upon exposure to a protein solution, protein adsorption occurs on top of the porous silicon layer. At the high-porosity region of the gradient also penetration of protein molecules into the porous layer takes place. Ellipsometry data is recorded after protein exposure and variations of protein adsorption along the porous silicon gradient is modeled as well as the in-depth profile of protein penetration. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.