Abstract
Zeolitic imidazolate framework/carbon nanotube (ZIF-67/CNTs) was prepared by precipitation method. ZIF-67/CNTs maintained the characteristics of large specific surface area and high porosity of ZIFs, showing stable cubic structure. The adsorption capacities of ZIF-67/CNTs for Cong red (CR), Rhodamine B (RhB) and Cr(VI) were 36.82 mg/g, 1421.29 mg/g and 716.67 mg/g under the conditions of 2:1, 3:1 and 1:3 masses of ZIF-67 and CNTs, respectively. The optimum adsorption temperature of CR, RhB and Cr(VI) were 30 °C, and the removal rates at the adsorption equilibrium were 81.22%, 72.87% and 48.35%. The adsorption kinetic model of the three adsorbents on ZIF-67/CNTs was consistent with the quasi-second order reaction model, and the adsorption isotherms were more consistent with adsorption law of Langmuir. The adsorption mechanism for Cr(VI) was mainly electrostatic interaction, and the adsorption mechanism for azo dyes was the combination of physical and chemical adsorption. This study would provide theoretical basis for further developing metal organic framework (MOF) materials for environmental applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.