Abstract
The adsorption of glucose oxidase (GOx) was studied at the interface between two immiscible electrolyte solutions (ITIES) by interfacial capacitance and surface tension measurements and at the air/water (phosphate buffer) interface by surface tension and neutron reflection measurements. The adsorption at both interfaces was found to be time, enzyme concentration, and ionic strength dependent. There was a switch from one interfacial adsorption state to another, as the enzyme concentration was increased. At the ITIES, there was evidence of an interaction between the adsorbed enzyme and the hydrophobic cation in the organic phase (1,2-dichloroethane). The enzyme adsorbed at the air/water interface was found to dissociate into monomers at the lower buffer total concentration of 2 mM while, at the higher buffer concentration of 0.2 M, the adsorbed enzyme retained its dimer structure. The adsorption mostly formed monolayers and the layer thickness varied with bulk concentration, indicating deformation related to the packing of the enzyme at the interface. For enzyme concentrations above 1 μM, in high ionic strength medium, bilayers of enzyme started to form, and the interlayer interactions resulted in a less densely packed second layer forming on the aqueous side of the first one. The switch in properties of the adsorbed layer observed in interfacial tension and capacitance measurements at the ITIES occurred over the same enzyme concentration range as the formation of a more densely packed layer detected from neutron reflection at the air/water interface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have