Abstract
Zn–Al layered double hydroxides (LDHs) with different molar ratios Zn/Al (0, 0.17, 0.34, 0.97, 3.47, ∝) were prepared by the co-precipitation of chlorides, characterized and evaluated for their fluoride adsorption at room temperature from aqueous solutions. The fluoride adsorption of the as-synthesized LDHs was influenced by the chemical composition of the LDHs and ZA-11 (Zn/Al = 0.97) had the highest capacity for fluoride adsorption (1.14–4.16 mg/g). The adsorption increased after calcination of the LDH up to 500 °C. The equilibrium data were fitted to the Freundlich, Langmuir, and Temkin equations. The kinetics of fluoride adsorption followed the pseudo-second order model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.