Abstract

Microplastics are the critical carriers of heavy metals in the environment. Thus, investigating the adsorption mechanisms between the microplastics and heavy metals is helpful to understand the migration and transformation pattern of the heavy metals in the environment. The adsorption of microplastics towards heavy metals can be largely affected by natural aging (e.g., UV-aging), environmental pH, and salinity. In this study, the adsorption of polystyrene (PS) towards Cu2+ and the effects of UV-aging, environment pH, and salinity on the adsorption were systematically investigated. The results show that the adsorption capacity of PS towards Cu2+ increased with the UV-aging time, as UV-aging increased the microcracks and oxygen-containing functional groups on the surface of the PS. Adsorption kinetics data followed the pseudo-second-order model, indicating that the interaction between PS and Cu2+ is chemical adsorption. Adsorption isotherms data could be well-described by both the Langmuir and Freundlich models, indicating that the adsorption was multilayer adsorption. As the solution pH and salinity can influence the surface charge of the PS, they could also affect the performance of the PS on Cu2+ adsorption. High pH facilitated the adsorption of PS towards Cu2+, while high salinity (above 1‰) inhibited the adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.