Abstract

The adsorption capacities and rates of seven principal chlorinated organic compounds for six commercial GACs were investigated. All the adsorption isotherms were expressed by the Freundlich equation, and the isotherms for the chloroethylenes such as trans - 1,2-dichloroethylene, trichloroethylene and tetrachloroethylene could be shown by the modified Freundlich equation Q′ = k′ ( C/ C s ) l/ n for each GAC. The magnitude of adsorption of the chlorinated organic compounds was in the order of: tetrachloroethylene > trichloroethylene > trans - 1,2-dichloroethylene > 1,1-dichloroethane > carbontetrachloride > 1.1,1-trichloroethane > chloroform. The value of k for a certain GAC could be predicted from the quantity of pores smaller than 2 nm in diameter. The adsorbed amounts were decreased by 10–20% when humic substances coexisted. The working periods of a fixed bed adsorber before regeneration were predicted by calculating breakthrough curves for various influent concentrations of trichloroethylene and tetrachloroethylene at the space velocities of 5 or 10 h −1, and it was certified that the adsorption method by GAC was feasible for removing these compounds from water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.