Abstract

Theoretical study of carbon monoxide adsorption on Si x Ge4 − x (x = 0–4) nano-clusters has been carried out using advanced hybrid meta density functional method of Truhlar (MPW1B95). MG3 semi-diffuse (MG3S) and correlation consistent valence basis sets with relativistic core potential were employed to improve the results. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. The geometry, adsorption energy, charge distribution, and vibrational frequency of CO adsorption on all possible structures were investigated. The maximum vibrational frequency changes occur in the bridge structures while the most stable structures occur when CO adsorbs on one silicon atom in a flat surface. The changes of spin densities arising through bridged structures with higher spin multiplicities were rationalized. Adsorption energies of CO on one Si atom are by far more negative than the corresponding value for on Ge atom, at the highest being nearly −77 and −35 kJ mol−1. Comparison was made of adsorbed CO bridging neighbouring and diagonal Si atoms and the former was more stable, having adsorption energy of nearly −77 kJ mol−1. Flat surfaces adsorb CO more favourably. Exhaustive vibrational frequency analyses were performed to confirm the local minima energy of all optimized structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.