Abstract

AbstractCO adsorption on small cationic, neutral, and anionic (AlN)n (n = 1–6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, an N on‐top (onefold coordinated) site is found to be the most favorable one, irrespective of the charge state of the clusters. The adsorption energies of CO on the anionic (AlN)nCO (n = 2–4) clusters are greater than those on the neutral and cationic complexes. The adsorption energies on the cationic and neutral complexes reflect the odd–even oscillations, and the adsorption energies of CO on the cationic (AlN)nCO (n = 5, 6) clusters are greater than those on the neutral and anionic complexes. The adsorption energies for the different charge states decrease with increasing cluster size. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call