Abstract
The treatment of pharmaceutical wastewater is a critical environmental challenge, necessitating efficient removal methods. This study investigates the adsorption of a synthetic multicomponent pharmaceutical wastewater (SPWW) containing methanol, benzene, methylene chloride, 4-aminophenol, aniline, and sulfanilic acid onto charcoal-based activated carbon (AC). Batch experiments were conducted to study the effects of pH, contact time, and initial concentrations of the adsorbates. The results show that longer contact time and higher initial concentrations increase the adsorption capacity, whereas pH shows no significant effect on the adsorption capacity at a value of less than 10, eliminating the need for pH adjustment and reducing process costs. The pseudo-second order (PSO) kinetic model best describes the adsorption process, with intraparticle diffusion playing a key role, as confirmed by the Weber and Morris (W-M) model. Six models describing the adsorption at equilibrium are applied to experimental data, and their parameters are estimated with a nonlinear regression model. Among isotherm models, the Langmuir-Freundlich model provides the best fit, suggesting multilayer adsorption on a heterogeneous granular activated carbon (GAC) surface. The maximum adsorption capacity is estimated to be 522.3 mgC/gAC. Experimental results confirm that GAC could effectively treat highly concentrated pharmaceutical wastewater, achieving up to 52% removal efficiency.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.