Abstract

The treatment of cadmium-containing wastewater is of great significance for the emission control of the heavy metal cadmium. Here, a superparamagnetic nano-Fe3O4@SiO2 functionalized material (MFS) was prepared via a co-precipitation method, and the adsorption thermodynamic and kinetic characteristics of Cd2+ were studied by isothermal adsorption tests and kinetic experiments. The adsorption process and mechanism of MFS with respect to Cd2+ were also studied using BET, XRD, and SEM. The Langmuir equation well described the isothermal adsorption characteristics of MFS, and the maximum adsorption capacity was 69.49 mg·g-1. The standard free energy (ΔG), enthalpy (ΔH), and entropy changes (ΔS) showed that the adsorption reaction was a spontaneous, endothermic, and entropic process. The optimal initial pH of the adsorption reaction was 7. The four interfering ions (Mg2+, SO42-, Ca2+, and NO3-) in the solution had a certain inhibitory effect on the adsorption reaction. The pseudo-second-order kinetic model showed that the adsorption process of Cd2+ was divided into two stages, namely a rapid external diffusion stage and a slow internal diffusion stage. The removal rate of Cd2+ was still>73% after using the MFS three times. The BET, XRD, FTIR, and VSM analyses showed that SiO2 was successfully modified on the Fe3O4 surface. MFS is mainly spherical in structure with an average particle size of 38.7 nm and has a saturated magnetic intensity of 85.38 emu·g-1. The XRD, EDS, and XPS analyses revealed that Cd2+ was successfully adsorbed by the material, and the main mechanism was the coordination reaction between Cd2+ and -OH on the surface of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call