Abstract

In this paper, the effect of Tannic acid (TA), a green, biodegradable plant polyphenol, as a talc depressant on the separation behavior of talc and chalcopyrite was investigated. The results of micro-flotation studies revealed that at a TA dosage of 20 mg/L at pH 7, talc recovery was barely 10 % whereas chalcopyrite recovery remained above 90 %, indicating that TA can selectively depress talc flotation. The results of the artificial mixed minerals test further confirmed the depressive effect of TA. The adsorption results showed that the adsorption density of TA on talc was greater than that on chalcopyrite surface. Similar conclusions were observed in zeta potential tests. It is noteworthy that the zeta potential of the chalcopyrite treated with TA and butyl xanthate sodium continued to shift negatively in comparison to the zeta potential of chalcopyrite treated with TA alone, suggesting that butyl xanthate sodium can continue to adsorb on the surface of chalcopyrite following TA treatment. Besides, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy tests concluded that TA adsorbs on talc surface by physical (hydrophobic) interaction. Differences in the crystal structures of chalcopyrite and talc, as well as the large number of phenolic hydroxyl structures contained in TA, are the main driving forces for the selective adsorption of TA on the talc surface. This work provides an insight to the selection of inhibitors for the separation of chalcopyrite and talc, particularly from the perspective of the hydrophobic effect of the talc layered structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call