Abstract

Piezoquartz microweighing, surface electroconductivity measurements, and IR and Raman spectroscopies were used to study the mechanism and regularities of the interaction of carbon monoxide, ammonia, and oxygen, gases of different electronic natures encountered in the environment and various technological processes, with the surface of solid solutions and the binary compounds of the InSb-ZnTe system. An analysis of the results with the use of the acid-base and other physicochemical characteristics of the adsorbents and of the electronic properties of the adsorbate molecules showed that the values of adsorption of the gases lie within α = 10−5−10−3 mol/m2. It was demonstrated that, at temperatures above 293 K, the adsorption of CO and NH3 occurs by the donor-acceptor mechanism, whereas oxygen is adsorbed through the ion-radical mechanism, with the predominant participation of coordinatively unsaturated metal atoms and vacancy defects, respectively. It was revealed that the acid-base, adsorption, electrophysical, and optical properties vary similarly with changing composition of the system, a behavior that suggests the same origin of adsorption sites and inherent surface states and makes it possible to predict the adsorption activity of a surface on the basis of its acid-base properties and the properties of the binary compounds and constituent elements. Similarities and distinctions in the behavior of (InSb)x(ZnTe)1 − x solid solutions and the binary compounds (InSb and ZnTe) were identified. Specific features of solid solutions, as multicomponent systems, are that adsorption on them is energetically more favorable, especially well pronounced in the acid-base characteristic-composition and adsorption characteristic-composition diagrams. Such diagrams made it possible to determine the solid solution most active with respect to ammonia, (InSb)0.95(ZnTe)0.05, which was used to make a selective high-sensitivity gas sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.