Abstract

Understanding the adsorption dynamics of nanoparticles at solid-liquid interfaces is of paramount importance to engineer nanoparticles for a variety of applications. The nanoparticle surface chemistry is significant for controlling the adsorption dynamics. This study aimed to experimentally examine the adsorption of surface-modified round-shaped silica nanoparticles (with an average diameter of 12 nm), grafted with hydrophobic (propyl chains) and/or hydrophilic (polyethylene glycol chains) agents, at an aqueous solution-silica interface with spherical soda-lime glass beads (diameter of 3 mm) being used as adsorbents. While no measurable adsorption was observed for solely hydrophobic or hydrophilic nanoparticles, a considerable level of adsorption was detected for nanoparticles comprising both hydrophobic and hydrophilic agents. Various kinetic models were employed to model the adsorption dynamics of the responsive nanoparticles. The results demonstrated that the mixed diffusion-kinetics models could predict the dynamics better than the adsorption diffusion models, indicating that the dynamics is controlled by a combination of liquid film diffusion, intra-particle diffusion, and mass action. Additionally, the adsorption of the surface-modified silica nanoparticles onto a mineral silica surface was examined using molecular dynamics simulations. The interaction energy for nanoparticles comprising both hydrophobic and hydrophilic agents was evaluated to be more favorable than that of solely hydrophobic or hydrophilic nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.