Abstract
Polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Nap) and phenanthrene (Phe) are organic pollutants that are of concern because of their environmental toxicity. Adsorption is a promising process for the removal of Nap and Phe from water and soil. The riparian zone between a river and a riparian aquifer, which is rich in adsorption medium, may be important for PAH remediation. Nap and Phe may be removed from the surface water through adsorption by the media in the riparian zone. However, there is still a lack of the removal patterns and mechanisms of media in the riparian zone to remediate water contaminated by Nap and Phe simultaneously. In this study, focusing on the typical PAHs (Nap and Phe) as target pollutants, batch static adsorption and desorption experiments of Nap and Phe were carried out to explore the competitive adsorption mechanisms of Nap and Phe in the binary system. Batch dynamic adsorption experiments were conducted to ascertain the adsorption regulation of Nap and Phe in sediments during the recharge of groundwater by river water in a riparian zone. The static adsorption experiment results showed that competitive adsorption of Nap and Phe occurred, and a mutual inhibitory effect of Nap and Phe adsorption was observed in the binary system. Phe had a stronger inhibitory effect on Nap, Phe was preferentially adsorbed on the medium in binary adsorption. The results of batch dynamic experiments showed that, in terms of adsorption, the riparian zone in the study area showed stronger performance for removal of Phe than Nap. The results of this paper could be useful for alleviating Nap and Phe pollution of groundwater and developing treatment protocols for groundwater exposed to Nap and Phe.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have