Abstract

ABSTRACT Based on batch experiments, we investigate the adsorption characteristics of Pb(II), Cd(II) and Cu(II) on multi-walled carbon nanotube-hydroxyapatite (MWCNT-HAP) composites in detail and explore the effects of the solid-to-liquid ratio, pH, the ionic strength, reaction time and temperature on adsorption. The results show that the adsorption on MWCNT-HAP follows Pb(II)>Cu(II)>Cd(II). With an increasing solid-to-liquid ratio, the adsorption quantity of Pb(II), Cd(II) and Cu(II) on MWCNT-HAP decreases, whereas the removal efficiency increases. The optimal pH for adsorption is 4.0∼6.0. The effect of the ionic strength on the adsorption of Cd(II) is pronounced, whereas that on the adsorption of Pb(II) and Cu(II) is small. In the single-component system and ternary-component system, the adsorption processes for Pb(II), Cd(II) and Cu(II) on MWCNT-HAP have fast kinetics, and the pseudo-second-order kinetics model can well describe the adsorption kinetics of the three heavy metals. The adsorption of Pb(II), Cd(II) and Cu(II) on MWCNT-HAP is spontaneous and endothermic, and the Langmuir model can well simulate the isothermal adsorption of Pb(II) and Cu(II), whereas the Langmuir and Freundlich models can be used to describe the isothermal adsorption of Cd(II).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call