Abstract
Nickel, a prevalent metal in the ecosystem, is released into the environment through various anthropogenic activities, leading to adverse effects. This research explored utilizing zeolite scony mobile-5 (ZSM-5) nanoparticles encapsulated in sodium alginate (SA) for nickel (II) removal from aqueous solutions. The adsorption characteristics of SA/ZSM-5 were examined concerning contact duration, initial metal ion concentration, pH level, temperature, and sorbent dosage. The findings revealed that a rising pH reduced Ni (II) uptake by the sorbent while increasing the Ni (II) concentration from 25 to 100 mg L−1 led to a decrease in removal percentage from 91 to 80% under optimal conditions. Furthermore, as sorbent dosage increased from 4 to 16 g L−1, uptake capacity declined from 9.972 to 1.55 mg g−1. Concurrently, SA/ZSM-5 beads' Ni (II) sorption capacity decreased from 96.12 to 59.14% with a temperature increase ranging from 25 to 55 °C. The Ni (II) sorption data on SA/ZSM-5 beads are aptly represented by Langmuir and Freundlich equilibrium isotherm models. Moreover, a second-order kinetic model characterizes the adsorption kinetics of Ni (II) on the SA/ZSM-5 beads. A negative free energy change (ΔG°) demonstrates that the process is both viable and spontaneous. The negative enthalpy values indicate an exothermic nature at the solid–liquid interface while negative entropy values suggest a decrease in randomness. In conclusion, this novel adsorbent exhibits promise for removing nickel from aqueous solutions and could potentially be employed in small-scale industries under similar conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.