Abstract
In view of the problem of Fe3+ pollution in an iron sulfur mine, different layers of loess soil in the Bijie area were used for adsorption to alleviate the mine wastewater pollution by natural treatment. The effects of the initial concentration of Fe3+, adsorption time and pH value on the adsorption performance of top, core and subsoil layers of loess soils were studied by the oscillatory equilibrium method, and the adsorption mechanism of these three soils was analyzed through a kinetic adsorption experiment and infrared spectroscopy. The results showed that the adsorption capacity of Fe3+ was improved by increasing the initial concentration and reaction time, but the adsorption rate of the adsorption capacity of Fe3+ was reduced. The adsorption rate of Fe3+ in the subsoil layer was faster than that in the other two layers. The higher the pH, the higher the adsorption capacity. After the pH was higher than 3.06, it had little effect on the adsorption capacity, but the adsorption rate increased. The first-order kinetic equation, second-order kinetic equation and Elovich equation were suitable for iron adsorption kinetics of three soils. The fitting correlation coefficient of the second-order kinetic equation was close to one, indicating the main role of chemical adsorption. The adsorption rate constant of the subsoil layer was about two times and three times that of the core soil layer and the topsoil layer. The Langmuir model can better fit the isothermal adsorption process. The results of infrared spectroscopy of soil showed that the content of soil organic matter played an important role in the adsorption capacity of Fe3+. The subsoil layer had a higher concentration of organic matter and more abundant functional groups, so the adsorption capacity of Fe3+ was the highest. The results could provide a theoretical basis for the removal of iron in acid mine wastewater.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have