Abstract

Chest compressions and ventilation attempts can generate aerosols during resuscitation. It is important to determine whether different materials suitable for the blanketing of cardiac arrest patients can diminish exposure to aerosols. In this study, three volatile organic compounds, ethanol, acetone, and isoprene, commonly found in human breath in moistened air, acted as substitutes for aerosols. Here, we present information on the adsorption of these volatiles to three blanketing materials: polyvinyl chloride, polyethylene, and aluminum coated polyethylene terephthalate. After exposure to the surfaces of these materials the test volatiles were quantified by the proton transfer reaction-time of flight-mass spectrometry. There was a trend towards a potentially higher reduction for acetone (p = 0.071) and isoprene (p = 0.050) on polyethylene, compared to polyvinyl chloride and aluminum coated polyethylene terephthalate during the rise interval. Adsorption capacity did not differ between the foils and was between 67% and 70%. From our studies, we propose that the aluminum-coated polyethylene terephthalate surface of space blankets prove adequate to diminish exposure to volatiles in moistened air, and hence to aerosols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.