Abstract

Lately, drug delivery systems established on nanostructures have become the most proficient to be studied. There are different studies suggested that the BN nanoclusters can be used as drug carriers and transport drugs in the target cell. Therefore, the interactions and adsorption behavior of Mercaptopurine (MC) and 6-thioguanine (TG) as anti-cancer drugs on the B12N12 (BN), AlB11N12 (AlBN) and GaB11N12 (GaBN) nanoclusters were studied by density functional theory (DFT) and quantum mechanics atoms in molecules (QMAIM) methods to find a new drug delivery system. Our results showed strong adsorption obtained in BN-MC/TG and AlBN-MC/TG complexes can be decomposed by the BN and AlBN indicating that these nanostructures are not suitable in drug efficiency of MC and TG drugs. Unlike the BN and AlBN nanoclusters, GaBN significantly makes the MC and TG drugs adsorption energetically favorable. The high solvation energy of GaBN when interacting with MC and TG drugs led it to applicability as nanocarriers for these drugs in the drug delivery systems. Furthermore, GaBN has a short recovery time for MC, and TG drugs desorption compared to BN and AlBN nanoclusters. It is predicted that the MC, and TG drugs over GaBN can be used as a drug delivery system. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call