Abstract

Amine/quaternary ammonium lignin for adsorption of tungsten was synthesized by amination and quaternization from lignin. The adsorbent was characterized by SEM-EDS and FTIR. The effects of pH, initial concentration of tungsten, adsorption time and dosage of adsorbent on the adsorption effect were investigated. The adsorption mechanism was revealed by SEM-EDS and FTIR and XPS. The results showed that amine/quaternary ammonium lignin was loose and rough and contained a large number of phenolic hydroxyl and amine and quaternary ammonium functional groups. Using the optimum conditions, which included the pH of 4.0 and initial tungsten concentration of 800 mg·L−1 and adsorption time of 960 min, the saturated adsorption capacity of 1 g·L−1 amine/quaternary ammonium lignin for tungsten reached 421.68 mg·g−1. The adsorption followed Langmuir model and quasi-second-order kinetic model, indicating that the adsorption was monolayer homogeneous chemisorption. When the total concentration of tungsten was 0.005 mol·L−1 and the value of pH was smaller than 4.7, H2W12O406− was the existing form of tungsten and was adsorbed by electrostatic attraction of hydrogen bond and coordination with amino and ion exchange with Cl−.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.