Abstract

This study investigates polyethylene glycol (PEG) homopolymer thin film adsorption on gold surfaces of controlled surface chemistry. The conformational states of physisorbed PEG are analyzed through polarization modulation infrared reflection-absorption spectrometry (PM-IRRAS). The PM-IRRAS principle is based on specific optical selection rules allowing the detection of surface-specific FTIR response of thin polymer films on the basis of differential reflectivity at the polymer/substrate interface for p- and s-polarized light. The intensification of the electric field generated at the PEG/substrate interface for p-polarized IR light in comparison with s-polarized light permits the analysis of PEG chain anisotropy and conformational changes induced by the adsorption. Results showed that PEG adsorbs on model substrates having a rather hydrophilic character in a way that the PEG chains spread parallel to the surface. In the case of a very hydrophilic substrate, the adsorbed PEG chains are in a stable thermodynamic state which allows them to arrange and crystallize as stacked crystalline lamellae after adsorption. The surface topography and morphology of the PEG thin films were also investigated by atomic force microscopy (AFM). While in the bulk state, PEG crystallizes in the form of large spherulites; on substrates whose adsorption is favored by surface chemistry, PEG crystallizes in the form of stacked lamellae with a thickness equal to 20 nm. Conversely, on a hydrophobic substrate, the PEG chains do not crystallize and adsorption occurs in the statistical coil state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call