Abstract

Channel-like and cage-like mesoporous silicas, SBA-15 (P6mm symmetry group) and SBA-16 (Im3m symmetry group), were modified by introducing single ureidopropyl surface groups, mixed ureidopropyl and mercaptopropyl surface groups, and single bis(propyl)disulfide bridging groups. These hexagonal and cubic organosilicas were prepared under acidic conditions via co-condensation of tetraethyl orthosilicate (TEOS) and proper organosilanes using poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) amphiphilic block copolymer templates, P123 (EO20PO70EO20) and F127 (EO106PO70EO106). The modified SBA-15 and SBA-16 materials were synthesized by varying the molar ratio of organosilane to TEOS in the initial synthesis gel. The removal of polymeric templates, P123 and F127, was performed with ethanol/hydrochloric acid solution. In the case of SBA-15 the P123 template was fully extracted, whereas this extraction process was less efficient for the removal of F127 template from the SBA-16-type organosilicas; in the latter case a small residue of F127 was retained. The adsorption and structural properties of the resulting materials were studied by nitrogen adsorption-desorption isotherms at −196∘C (surface area, pore size distribution, pore volumes), powder X-Ray diffraction, CHNS elemental analysis and high-resolution thermogravimetry. The structural ordering, the BET specific surface area, pore volume and pore size decreased for both channel-like and cage-like mesoporous organosilicas with increasing concentration of incorporated organic groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.