Abstract
Perfluorooctane sulfonate (PFOS) has drawn increasing attention due to its omnipresence and adverse health effects. We prepared a new adsorptive photocatalyst, Ga/[email protected], based on activated carbon and TiO2, and tested the adsorption and subsequent solid-phase photodegradation of PFOS. Ga/[email protected] showed faster adsorption kinetics and higher affinity for PFOS than the parent AC, and could degrade 75.0% and mineralize 66.2% of pre-sorbed PFOS within 4-h UV irradiation. The efficient PFOS photodegradation also regenerates Ga/[email protected], allowing for repeated uses without invoking chemical regenerants. The superior photoactivity is attributed to the oxygen vacancies, which not only suppressed recombination of the e−/h+ pairs, but also facilitated O2− generation. Both h+ and O2− played critical roles in the PFOS degradation, which starts with cleavage of the sulfonate group and converts it into PFOA that is then decarboxylated and defluorinated following the stepwise defluorination mechanism. Ga/[email protected] holds the potential for more cost-effective PFOS degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.