Abstract

The adsorption and photochemistry of bromoform multilayers on and in amorphous solid water (ASW) are studied using reflection absorption infrared spectroscopy (RAIRS), temperature-programmed desorption (TPD), and time-of-flight (TOF) techniques. Regardless of the initial exposure, bromoform resides on top of the ASW layer. No migration of bromoform molecules into the ASW film is observed for adsorption on top of the water layer. UV irradiation at a wavelength of 266 nm results in significant desorption of photochemical fragments, reaction of photochemical products on the surface and light-induced molecular reorganization of the remaining CHBr 3, which is apparent from a comparison of pre- and post-irradiation TPD experiments. The ice-mediated C–C (C 2H 2Br 2) and C–O (CHBrO) photoproducts desorb from both the ASW surface and the Pt surface. The photoproduct C 2H 2Br 4 is formed exclusively from multilayers of CHBr 3 and desorbs only from the Pt surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.