Abstract

Abstract Functional magnetic Fe3O4@PPy microspheres were prepared and characterized by XRD, FTIR, SEM, TEM, and magnetometer, and the adsorption of Hg(II) onto Fe3O4@PPy was investigated. The results showed that the adsorption of Hg(II) onto Fe3O4@PPy dramatically increases within 5 min and reaches adsorption equilibrium at 200 min. The adsorption of Hg(II) increases with pH increased, and a removal efficiency (RE) of 90.5% was obtained at pH 7.2. The isotherm studies revealed that the adsorption of Hg(II) onto the Fe3O4@PPy fits well with the Langmuir isotherm model, and the calculated qm value of 232.56 mg/g. The adsorption process of Hg(II) onto the Fe3O4@PPy is well-fitted by the pseudo-second-order model with a high correlation coefficient (R2) of 0.999. The thermodynamic coefficients (ΔH°, ΔS°, and ΔG°) were calculated from the temperature-dependent adsorption isotherms and illustrated that the adsorption of Hg(II) on the Fe3O4@PPy was spontaneous and endothermic. Different desorption agents were used to recover Hg(II) adsorbed onto Fe3O4@PPy, and a satisfactory recovery percentage of 93.0% was obtained by using 0.1 M HCl and 0.05 M NaCl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.