Abstract
In this study, Nd, Ga, and Sm were used to partially replace Ti in layered perovskite La2Ti2O7 (A2B2O7 type) with the aim of developing a highly efficient low-temperature catalyst for the oxidative dehydrogenation of ethane (ODHE). Ethylene was successfully produced by the ODHE over the modified catalysts at temperatures of as low as 600 °C, and the Ga-doped catalyst exhibited the highest ethylene yield of 16.9 % at 625 °C with a high gas hourly space velocity of 35,273 h−1 and short reactant–catalyst contact time of 0.1 s. Thermal activation improved the ethylene yield to 33.6–39.4 % at 650–700 °C with a short contact time (<0.1 s) and productivity of approximately 10 gethylene·gcatalyst−1·h−1, which exceeds reported values. However, the pure catalytic activity could not be depicted at higher temperatures (>700 °C) because the reaction became more complex owing to thermally activated processes such as thermal dehydrogenation, thermal–oxidative dehydrogenation, and reforming reactions. The effects of B-site doping were explored through in situ characterization and density functional theory calculations, and a mechanism for the ODHE was proposed based on the results. Adsorbed oxygen atoms, which form by the dissociation of molecular oxygen at high temperatures, are responsible for the selective dehydrogenation of ethane to ethylene. Overall, the electronic modification of the B-site doped La2Ti2O7 catalysts improved the catalytic activity at 525–575 °C, and the experimental and calculation results confirmed that dissociatively adsorbed oxygen atoms were responsible for the improved ODHE.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.