Abstract

Mobile advertising plays a vital role in the mobile app ecosystem. A major threat to the sustainability of this ecosystem is click fraud, i.e., ad clicks performed by malicious code or automatic bot problems. Existing click fraud detection approaches focus on analyzing the ad requests at the server side. However, such approaches may suffer from high false negatives since the detection can be easily circumvented, e.g., when the clicks are behind proxies or globally distributed. In this paper, we present AdSherlock, an efficient and deployable click fraud detection approach at the client side (inside the application) for mobile apps. AdSherlock splits the computation-intensive operations of click request identification into an offline procedure and an online procedure. In the offline procedure, AdSherlock generates both exact patterns and probabilistic patterns based on URL (Uniform Resource Locator) tokenization. These patterns are used in the online procedure for click request identification and further used for click fraud detection together with an ad request tree model. We implement a prototype of AdSherlock and evaluate its performance using real apps. The online detector is injected into the app executable archive through binary instrumentation. Results show that AdSherlock achieves higher click fraud detection accuracy compared with state of the art, with negligible runtime overhead.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.