Abstract
Online search advertising is currently the greatest source of revenue for many Internet giants such as Google™, Yahoo!™, and Bing™. The increased number of specialized websites and modern profiling techniques have all contributed to an explosion of the income of ad brokers from online advertising. The single biggest threat to this growth is however click fraud. Trained botnets and even individuals are hired by click-fraud specialists in order to maximize the revenue of certain users from the ads they publish on their websites, or to launch an attack between competing businesses. We analyzed different types of click fraud methods and proposed new methodologies to detect and prevent them real time. While traditional commercial approaches detect only some specific types of click fraud, Collaborative Click Fraud Detection and Prevention (CCFDP) system, an architecture that we have implemented based on the proposed methodologies, can detect and prevents all major types of click fraud. The proposed solution analyzes the detailed user activities on both, the server side and client side collaboratively to better describe the intention of the click. Data fusion techniques are developed to combine evidences from several data mining models and to obtain a better estimation of the quality of the click traffic. Our ideas are experimented through the development of the Collaborative Click Fraud Detection and Prevention (CCFDP) system. Experimental results show that the CCFDP system is better than the existing commercial click fraud solution in three major aspects: 1) detecting more click fraud especially clicks generated by software; 2) providing prevention ability; 3) proposing the concept of click quality score for click quality estimation. In the CCFDP initial version, we analyzed the performances of the click fraud detection and prediction model by using a rule base algorithm, which is similar to most of the existing systems. We have assigned a quality score for each click instead of classifying the click as fraud or genuine, because it is hard to get solid evidence of click fraud just based on the data collected, and it is difficult to determine the real intention of users who make the clicks. Results from initial version revealed that the diversity of CF attack types makes it hard for a single counter measure to prevent click fraud. Therefore, it is important to be able to combine multiple measures capable of effective protection from click fraud. Therefore, in the CCFDP improved version, we provide the traffic quality score as a combination of evidence from several data mining algorithms. We have tested the system with a data from an actual ad campaign in 2007 and 2008. We have compared the results with Google Adwords reports for the same campaign. Results show that a higher percentage of click fraud present even with the most popular search engine. The multiple model based CCFDP always estimated less valid traffic compare to Google. Sometimes the difference is as high as 53%. Detection of duplicates, fast and efficient, is one of the most important requirement in any click fraud solution. Usually duplicate detection algorithms run in real time. In order to provide real time results, solution providers should utilize data structures that can be updated in real time. In addition, space requirement to hold data should be minimum. In this dissertation, we also addressed the problem of detecting duplicate clicks in pay-per-click streams. We proposed a simple data structure, Temporal Stateful Bloom Filter (TSBF), an extension to the regular Bloom Filter and Counting Bloom Filter. The bit vector in the Bloom Filter was replaced with a status vector. Duplicate detection results of TSBF method is compared with Buffering, FPBuffering, and CBF methods. False positive rate of TSBF is less than 1% and it does not have false negatives. Space requirement of TSBF is minimal among other solutions. Even thoughBuffering does not have either false positives or false negatives its space requirement increases exponentially with the size of the stream data size. When the false positive rate of the FPBuffering is set to 1% its false negative rate jumps to around 5%, which will not be tolerated by most of the streaming data applications. We also compared the TSBF results with CBF. TSBF uses only half the space or less than standard CBF with the same false positive probability. (Abstract shortened by UMI.)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.