Abstract

The effects of adrenaline and the beta-adrenergic agonist isoprenaline on K+-evoked tension (K+-contracture) and Ba2+ current were investigated in chicken slow (anterior latissimus dorsi (ald)) muscle using isometric-tension measurements and current recording. Addition of adrenaline (10(-7) - 10(-5) M) or isoprenaline (10(-6) - 10(-5) M) to the bath reduced the amplitude of the K+-contractures. These effects were blocked by the beta-antagonist propranolol (5 x 10(-6) M). External application of a cAMP analogue (8-bromo cyclic AMP; 1 x 10(-4) M) also decreased the amplitude of the K+-contractures. To analyze the possible relationship between the induced tension reduction and effects on sarcolemmal Ca2+ channels, a slow action potential and a slow inward membrane current were studied in intact ald chicken muscle fibres. When the ald muscle was immersed in a Na+- and Cl--free solution containing Ba2+ and depolarizing pulses were delivered from a -80 mV holding potential, the muscle fibres exhibited a small, slow Ba2+-dependent potential (observed at about -26 mV, peak amplitude, around -10 mV). The response was blocked by the addition of Co2+ (5 mM) or Cd2+ (2 mM). Using the three-microelectrode voltage-clamp technique, a slow inward membrane current underlying the Ba2+ potential could be discerned. The current had a mean threshold of -60 mV, reached maximum at about -5 mV and ranged from ca. 9 to 19 pA/cm2 (depending on the external Ba2+ concentration). It had a mean reversal potential of +45 mV. The Ba2+ inward current was diminished when adrenaline or isoprenaline was added to the bath (1 x 10(-5) M); however, this decrease did not occur when propranolol was present (5 x 10-6 M). These results suggest that the decreases in the tension of K+-contractures induced by adrenaline and isoprenaline may occur through beta-adrenergic effects on sarcolemmal Ca2+ channels in ald chicken slow muscle fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.