Abstract

The mode of action on actin polymerization of skeletal muscle actin ADP-ribosylated on arginine 177 by perfringens iota toxin was investigated. ADP-ribosylated actin decreased the rate of nucleated actin polymerization at substoichiometric ratios of ADP-ribosylated actin to monomeric actin. ADP-ribosylated actin did not tend to copolymerize with actin. Actin filaments were depolymerized by the addition of ADP-ribosylated actin. The maximal monomer concentration reached by addition of ADP-ribosylated actin was similar to the critical concentration of the pointed ends of actin filaments. ADP-ribosylated actin had no effect on the rate of polymerization of gelsolin-capped actin filaments which polymerize at the pointed ends. The results suggest that ADP-ribosylated actin acts as a capping protein which binds to the barbed ends of actin filaments to inhibit polymerization. Based on an analysis of the depolymerizing effect of ADP-ribosylated actin, the equilibrium constant for binding of ADP-ribosylated actin to the barbed ends of actin filaments was determined to be about 10(8) M-1. As actin is ADP-ribosylated by perfringens iota toxin and by botulinum C2 toxin, it appears that conversion of actin into a capping protein by ADP-ribosylation is a pathophysiological reaction catalyzed by bacterial toxins which ultimately leads to inhibition of actin assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.