Abstract

ABSTRACT Background Childhood asthma is a major global health concern. ADP-ribosylation factor 6 (ARF6) is a low-molecular-weight GTPase; however, its role in childhood asthma remains unclear. Methods Ovalbumin (OVA)-challenged neonatal mice and transforming growth factor-β1 (TGF-β1)-induced BEAS-2B cells were used as in vivo and in vitro models of childhood asthma, respectively. Results Upon OVA stimulation, ARF6 expression was upregulated in the lung tissue. Neonatal mice administered SehinH3 (an ARF6 inhibitor) exhibited improved pulmonary pathological injury, along with reduced inflammatory cell infiltration in the lungs and cytokine release in bronchial alveolar lavage fluid and serum (interleukin [IL]−3, IL−5, IL−13, IgE, and OVA-specific IgE). SehinH3 treatment restrained epithelial – mesenchymal transition (EMT) in the lungs of asthmatic mice, as evidenced by increased E-cadherin and decreased N-cadherin and α-smooth muscle actin expression. Different TGF-β1 exposures to BEAS-2B cells induced a time- and dose-dependent increase in ARF6 expression in vitro. Upon TGF-β1 stimulation, ARF6 knockdown repressed EMT and SehinH3 treatment caused similar results in BEAS-2B cells. The transcription factor E2F8 is involved in diverse biological functions and its increased expression was confirmed in vivo and in vitro. Dual-luciferase assays confirmed that E2F8 binds to the ARF6 promoter and promotes its transcriptional activity. In vitro results revealed that E2F8 silencing suppressed EMT, whereas rescue experiments showed that ARF6 overexpression partly reversed these phenomena. Conclusion Our study showed that ARF6 is associated with childhood asthma progression and may be positively regulated by E2F8. These results provide insight into the pathogenesis and treatment of childhood asthma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call