Abstract

An unusual binding of cardiolipin to the ADP/ATP carrier has been found, which is distinguished by the relatively large amount and by the tightness of binding. High-resolution 31P NMR studies on the detergent-solubilized ADP/ATP carrier from beef heart mitochondria revealed narrow signals from phosphatidylcholine and phosphatidylethanolamine and a broadened signal of 30-40-Hz line width, suggestive of cardiolipin. Line broadening of this magnitude is to be expected when tumbling of the whole protein-detergent micelle is the only source of phosphorus spin-spin relaxation. Thus a strong immobilization of the protein-bound cardiolipin is inferred. By sucrose density gradient centrifugation phosphatidylcholine and phosphatidylethanolamine were removed, while approximately six +/- one molecules of cardiolipin remained tightly bound in the dimeric protein molecule. The cardiolipin binding was stable against treatment with sodium dodecyl sulfate although release of the inhibitor carboxyatractyloside revealed at least partial protein denaturation. Ca2+ ions did not readily interact either with the bound cardiolipin. Complete detachment of the bound phospholipid was achieved by a short heat pulse in the presence of sodium dodecyl sulfate. Denaturation of the carrier protein by guanidinium chloride or NaClO4 also led to release of the bound phospholipid. Thus different stages of protein denaturation must be envisaged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.