Abstract

Background and Aim:Little information about the stability and changes of sheep ruminal microbiota due to pathogen intervention in the rumen simulation technique (RUSITEC) is available. This study aimed to investigate the effect of administration of a novel isolated Streptococcus bovis strain on rumen microbiology and physiology. In addition, the isolation of pigment-producing Streptococcus lutetiensis is described.Materials and Methods:Microbial strains were isolated from sheep rumen digesta. An isolated strain of S. bovis was evaluated in the RUSITEC system fed with mixed cattle feed and compared with an in-house developed probiotic formulation (PF), PF 1, containing Bacillus amyloliquifaciens, Bacillus subtilis, and Propionibacterium freudenreichii. The parameters of volatile fatty acid, lactic acid, pH profiling, and the coliform anti-pathogenicity were evaluated to determine the effect of S. bovis on rumen function and physiology.Results:Administration of S. bovis reduced the coliform count by 31.20% from 7.2×1010 colony-forming units (CFU)/mLto 1.7×106 CFU/mL. Agar diffusion assays revealed the extracellular antimicrobial activity of S. bovis against coliforms; Escherichia coli and Salmonella enterica with 12 and 14 mm zones of inhibition, respectively. Simultaneously, an increase of 61.62% in the rumen yeast count was noted. The physiological changes resulted in a 5% reduction in acetic acid concentration from 431 to 405 mg/L.Conclusion:The present research indicates that S. bovis is highly capable of altering rumen physiology and function on colonization and is a key transition microbe to be studied during rumen intervention studies. A decrease in the coliform count could be attributed to extracellular production of a bacteriocin-like substance, as illustrated through agar diffusion assays.

Highlights

  • The ruminal microbial community is diverse and is comprised hundreds of different bacterial, archaeal, fungal, and protozoal species

  • The present research indicates that S. bovis is highly capable of altering rumen physiology and function on colonization and is a key transition microbe to be studied during rumen intervention studies

  • A decrease in the coliform count could be attributed to extracellular production of a bacteriocin-like substance, as illustrated through agar diffusion assays

Read more

Summary

Introduction

The ruminal microbial community is diverse and is comprised hundreds of different bacterial, archaeal, fungal, and protozoal species. Ruminal streptococci represent facultative anaerobic bacteria which are regularly isolated from rumen of cattle and sheep [2], indicating their dominance over other culturable lactic acid-producing bacteria. A Streptococcus bovis is a facultative anaerobe that is normally found in the rumen of cattle and the colon of monogastrics. Little information about the stability and changes of sheep ruminal microbiota due to pathogen intervention in the rumen simulation technique (RUSITEC) is available. This study aimed to investigate the effect of administration of a novel isolated Streptococcus bovis strain on rumen microbiology and physiology. The isolation of pigment-producing Streptococcus lutetiensis is described

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.